Previous article Table of Contents  Next article

Year : 2020  |  Volume : 14  |  Issue : 2  |  Page : 224-227

Ultrasound-guided bilateral parasternal block: A boon for managing pain after sternal fracture/dislocation

1 Department of Anaesthesiology, Sancheti Hospital, Pune, Maharashtra, India
2 Department of Anaesthesiology, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, Telangana, India

Correspondence Address:
Dr. Sandeep Diwan
Department of Anaesthesiology, Sancheti Hospital, Pune - 411 005, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/sja.SJA_575_19

Rights and Permissions
Date of Submission09-Sep-2019
Date of Acceptance20-Oct-2019
Date of Web Publication5-Mar-2020


Sternal fractures are high velocity injuries which is associated with thoracic or lumbar vertebral fractures. Severe pain associated with sternal fractures can lead to impaired ventilation, low partial pressure of arterial oxygen, need of non-invasive or invasive ventilation with an endotracheal tube thereby leading to significant morbidity. In a series of three patients with manubrium sternal dislocation, we administered continuous bilateral parasternal blocks and initiated infusion of local anesthetics for different periods of time in all patients. The high pain scores drastically decreased followed by improved spontaneous ventilation. There was improvement in partial pressure of oxygen in arterial blood gas. None of the patient required a non-invasive or invasive ventilation. The spread of local anesthetic using injection of radio-opaque contrast through bilaterally placed parasternal catheters was followed by a computed tomography scan. This was done after obtaining informed consent from patient and waiver for scan. To the best of our knowledge, this is first report of successful pain management in patients who sustained manubrium – sternal dislocations using bilateral continuous catheters for a prolonged period.

Keywords: Anaesthesia; fracture; pain; regional; sternum; ultrasound

How to cite this article:
Diwan S, Nair A. Ultrasound-guided bilateral parasternal block: A boon for managing pain after sternal fracture/dislocation. Saudi J Anaesth 2020;14:224-7

How to cite this URL:
Diwan S, Nair A. Ultrasound-guided bilateral parasternal block: A boon for managing pain after sternal fracture/dislocation. Saudi J Anaesth [serial online] 2020 [cited 2022 Aug 19];14:224-7. Available from:

  Introduction Top

Manubriosternal fracture-dislocations are extremely painful and associated with respiratory insufficiency and sputum retention. Usually, such events are associated with multiple rib fractures (MRFs), underlying lung and cardiac contusion along with hydro, hemo, and pneumothorax.[1],[2],[3] Adequate analgesia is essential on an individual on the basis to prevent respiratory complications.[4] We discuss pain management of three patients who sustained high-impact trauma with manubriumsternal fracture/dislocations. A contrast study was performed to understand the spread of drugs via indwelling catheters in the interfascial plane.

  Case Series Top

Three patients who sustained injuries following road traffic accident were shifted from the accident site in a state of severe desaturation on a face mask with oxygen at 10 L/min. Preliminary examination revealed that all patients were in a hypotensive state (arterial blood pressures varied from 76/60 to 84/58 mm Hg), a Glasgow Coma Scale of 15/15, and with severe sternal pain (visual analog scale [VAS] 8–10/10). Two of the three patients had pericardial effusion (troponin-T was positive). Focussed assessment with ultrasonography (USG) revealed manubriumsternal dislocation in all three patients [Figure 1]a.
Figure 1: (a) Ultrasonography (USG) image showing manubriosternal dislocation. (b) USG image showing the relationship of IMA, pleura, rib, and pericardium (IMA- internal mammary artery, TTM- transversus thoracis muscle). (c) Image showing the desired plane between the pectoralis major and external intercostal muscle (EIM). (d) Image showing needle entry in the interfascial plane

Click here to view

Patients were shifted for computerized tomography (CT) scan for thoracic and abdominal imaging after they were administered intravenous (IV) paracetamol 1 gm, after hemodynamic stabilization and obtaining blood samples (hemogram, renal and liver function tests, cardiac markers and arterial blood gas [ABG]). On admission in ICU, the VAS was 8/10 to 10/10 and IV fentanyl infusion was initiated at 5 ml/hour (10 μg/ml). At 12 hours after admission with a persistent VAS of 6/10 to 8/10 and no significant improvement in ABG, it was decided to administer bilateral parasternal blocks.


Informed consent was obtained before performing the bilateral parasternal block. In the supine position, a 6–13 MHz linear transducer (Sonosite M-Turbo, Sonosite Inc.) was placed on the sternal bone and moved laterally to identify the lateral edge of the sternum. The internal mammary vessels (IMVs) were identified immediate lateral to the lateral edge of the sternum.

From inferior to superior the pleura (hyperechoic line with gliding movement during respiration) was visualized in each intercostal space. This was followed by the intercostal muscles sandwiched between the ribs and the pectoralis major muscle (PMm) forming the roof [Figure 1]b.

In the parasagittal plane, 2 or 3 cm lateral and parallel to the sternum, the ribs were identified in the short axis (as a hyperechoic curved line) and with the corresponding acoustic shadow below. This point is lateral to the IMV. The needle entry was made lateral to IMVs after deploying color doppler US to help identify the internal thoracic artery and its branches that courses between the PMm and external intercostal muscle (EIM). The injection entry point was infiltrated with 5 ml 1% lidocaine on both sides. An 18G Tuohy needle was inserted in-plane with the US probe, in a caudal-to-cranial direction [Figure 1]c. The point of needle entry was lateral to the IMVs and was advanced until the tip was positioned in the interfascial plane between the PMm and EIM. A test dose of normal saline (2–3 mL) was injected in real-time to confirm that the tip has been placed correctly in the interfascial plane, shown by separation of the fascial layers [Figure 1]d. 20 ml ropivacaine 0.375% and 50 μg of clonidine were injected thereafter and an 18G epidural catheter was placed 5 cm in the parasternal space. The procedure was repeated on the other side [Figure 2]a.
Figure 2: (a) Image showing the direction of needle entry (caudo-cranial) and probe placement. (b) The axial view after injecting contrast showing the spread of the contrast below and around the pectoralis major and above the EIM on the right side and on the left the contrast spreads deeper below the EIM. (c) The sagittal view after contrast injection depicts the catheter coursing below the sternum and contrast spread below the manubrium and sternum. (d) The coronal view after contrast shows spread in the retrosternal area and as far as the parasternal to intercostal area

Click here to view

The catheters were secured with Tegaderm biofilm (3M Tegaderm). Bacterial filters were attached to the catheters and infusion of 0.1% ropivacaine at 8 ml/hour was initiated through elastomeric infusion pumps (Baxter Corporation, Ontario, Canada) in the parasternal plane. All three patients received a serratus anterior plane block (SAPB) for associated fracture ribs. 0.1% ropivacaine infusion was initiated: 6 ml/hour for each parasternal catheter and 6 ml/hour for SAPB catheter. The patients received IV paracetamol 1 g every 8 hours. IV fentanyl infusion was tapered at 48 hours after the initiation of parasternal infusions and stopped eventually.

Post-block period

The parasternal region was infused with 0.1% ropivacaine for 8, 10, and 5 days in cases 1, 2, and 3, respectively. Total ropivacaine infused was 4680 mg, 5760 mg, and 2780 mg in patients 1, 2, and 3 for a duration of 8, 10, and 5 days, respectively. The fentanyl infusion was stopped 3 hours after the block. 30 μg fentanyl was ordered for a VAS score of 4 and more. Patients received fentanyl bolus for breakthrough pain on 4, 3, 4 occasions respectively in the first 24 hours. The oxygen saturation improved with the same 6 L/min with a FiO2 of 60% [Table 1]. The VAS decreased to 1/10 to 2/10, from a persistent 6–8/10. Fentanyl infusion was eventually stopped. Noninvasive ventilation and intubation were avoided in all three patients. All the catheters were removed once the SpO2 (oxygen saturation on pulse oximetry) stabilized for 24 hours.
Table 1: Showing the detailed pain management of all three patients

Click here to view

Contrast study

A contrast CT study with a fee waiver was done for one patient who provided informed consent. Contrast injection was done in bilateral parasternal planes. 5 ml Omnipaque (300 mg iodine/ml) was injected with 15 ml 0.9% normal saline (total volume of 20 ml). Images obtained were analyzed with the help of a radiologist.

The axial view depicted the spread of the contrast below and around the PMm and above the EIM on the right side and on the left the contrast spreads deeper below the EIM. [Figure 2]b. The sagittal view depicted the catheter coursing below the sternum and contrast spread below the manubrium and sternum [Figure 2]c. The coronal view showed the contrast in the retrosternal area and as far as the parasternal to the intercostal area [Figure 2]d.

  Discussion Top

Sternal fractures are often associated with thoracic vertebral fractures.[5] The overall mortality of patients with sternal fractures is 1.25% which increases to 15% in the presence of other associated injuries.[6] USG is a better guide to diagnose sternal fractures and manubriumsternal dislocations that are often missed on chest radiographs.[7] The manubriumsternal dislocations were easily diagnosed in our case series. Thoracic epidural and thoracic paravertebral analgesia have been the gold standard in the management of MRFs and thoracic trauma.[8],[9] These patients with multiple injuries and sternal fractures are difficult to position in either sitting or lateral for interventional procedures.

The sternum is bilaterally innervated by the anterior divisions of the intercostal nerves. After their emergence from the spinal nerve, the intercostal nerve courses between pleura and endothoracic fascia first, thereafter between the innermost and internal intercostal muscle (IICM), and last, between the transversus thoracis and IICM. There are the anterior intercostal nerves that lie anterior to the internal mammary artery (IMA). The cutaneous nerve emerges at the anteromedial edge piercing the IICM, external intercostal aponeurosis (EICA) and PMm and innervates the anterior chest. The sympathetic plexus around the IMVs innervate the sternum.[10] The parasternal blocks are performed at the emergence of the anterior cutaneous nerves in the interfascial plane below the pectorals major lateral to the sternum.

In these three cases, bilateral parasternal catheters were placed below PMm lateral to IMVs. We strongly recommend this technique for pain relief in all patients with manubriumsternal dislocations.

  Conclusion Top

USG guided parasternal catheters with continuous infusions improve pain scores and respiratory parameters without the need for noninvasive ventilation. USG can detect manubriumsternal dislocations. This case series propels the implementation of parasternal blocks in fracture-dislocations of the sternum.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Bentley TP, Journey JD. Sternal Fracture. [Updated 2019 Jan 05]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: [Last accessed on 2019 Sep 07].  Back to cited text no. 1
Klei DS, de Jong MB, Öner FC, Leenen LPH, van Wessem KJP. Current treatment and outcomes of traumatic sternal fractures-a systematic review. Int Orthop 2019;43:1455-64.   Back to cited text no. 2
Oyetunji TA, Jackson HT, Obirieze AC, Moore D, Branche MJ, Greene WR,et al. Associated injuries in traumatic sternal fractures: A review of the National trauma data bank. Am Surg 2013;79:702-5.  Back to cited text no. 3
Cellik B, Sahin E, Nadir A, Kaptanoglu M. Sternum fractures and effects of associated injuries. Thorac Cardiov Surg 2009;57:468-71.  Back to cited text no. 4
Von Garrel T, Ince A, Junge A, Schnabel M, Bahrs C. The sternal fracture: Radiographic analysis of 200 fractures with special reference to concomitant injuries. J Trauma 2004;57:837-44.  Back to cited text no. 5
Celik B, Sahin E, Nadir A, Kaptanoglu M. Sternum fractures and effects of associated injuries. Thorac Cardiovasc Surg 2009;57:468-71.  Back to cited text no. 6
Jin W, Yang DM, Kim HC, Ryu KN. Diagnostic values of sonography for assessment of sternal fractures compared with conventional radiography and bone scans. J Ultrasound Med 2006;25:1263-8.  Back to cited text no. 7
Gage A, Rivara F, Wang J, Jurkovich GJ, Arbabi S. The effect of epidural placement in patients after blunt thoracic trauma. J Trauma Acute Care Surg 2014;76:39-45.  Back to cited text no. 8
Karmakar MK, Critchley LA, Ho AM, Gin T, Lee TW, Yim AP. Continuous thoracic paravertebral infusion of bupivacaine for pain management in patients with multiple fractured ribs. Chest 2003;123:424-31.  Back to cited text no. 9
Glenesk NL, Lopez PP. Anatomy, Thorax, Intercostal Nerves. [Updated 2019 Feb 06]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: [Last accessed on 2019 Sep 07].  Back to cited text no. 10


  [Figure 1], [Figure 2]

  [Table 1]

This article has been cited by
1 Current Review of Analgesia and Regional Anesthesia Practices for Rib Fracture and Chest Wall Trauma
Paul D. Piennette, Sara Elizabeth Morris, Theresa Northern
Current Anesthesiology Reports. 2022;
[Pubmed] | [DOI]
2 Regional Anesthesia for Trauma in the Emergency Department
Nadia Hernandez, Johanna B. de Haan
Current Anesthesiology Reports. 2022;
[Pubmed] | [DOI]
3 Pectoral-intercostal fascial plane block in chronic post-sternotomy pain
RajendraK Sahoo, Rajesh Kar, Roushan Patel, Mukesh Kumar, Debasis Giri, Mithun Biswas, AbhijitS Nair
Annals of Cardiac Anaesthesia. 2022; 25(1): 97
[Pubmed] | [DOI]
4 Continuous subpectoral parasternal plane block for sternal hematoma with a manubrial fracture: A case report
Christina Lees, William Rumble, Leigh White
Journal of Clinical Anesthesia. 2021; 75: 110443
[Pubmed] | [DOI]
5 Ultrasound-guided parasternal blocks: techniques, clinical indications and future prospects
Minerva Anestesiologica. 2021; 87(12)
[Pubmed] | [DOI]
6 Parasternal plane block: a new technique added to our armamentarium, or a new issue added to our debates?
Sameh M. HAKIM
Minerva Anestesiologica. 2021; 87(12)
[Pubmed] | [DOI]


Previous article    Next article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  IN THIS Article
  Case Series
   Article Figures
   Article Tables

 Article Access Statistics
    PDF Downloaded130    
    Comments [Add]    
    Cited by others 6    

Recommend this journal