|
|
Previous article
Next articleORIGINAL ARTICLE
Year : 2010 | Volume
: 4
| Issue : 2 | Page : 72-79
Comparison of two drug combinations in total intravenous anesthesia: Propofol-ketamine and propofol-fentanyl
Sukhminder Jit Singh Bajwa1, Sukhwinder Kaur Bajwa2, Jasbir Kaur1
1 Department of Anaesthesiology & Intensive Care, Gian Sagar Medical College & Hospital, Ram Nagar, Banur, Punjab, India 2 Department of Obstetrics & Gynaecology, Gian Sagar Medical College & Hospital, Ram Nagar, Banur, Punjab, India
Correspondence Address: Sukhminder Jit Singh Bajwa House No-27-A, Ratan Nagar, Tripuri, Patiala, Punjab - 147 001 India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/1658-354X.65132

Date of Web Publication | 6-Jul-2010 |
|
|

Background and Aims: Keeping in consideration the merits of total intravenous anesthesia (TIVA), a genuine attempt was made to find the ideal drug combinations which can be used in general anesthesia. This study was conducted to evaluate and compare two drug combinations of TIVA using propofol-ketamine and propofol-fentanyl and to study the induction, maintenance and recovery characteristics following anesthesia with these techniques. Settings and Design: A case control study was conducted, which included 100 patients, in the department of Anaesthesiology and Intensive care, Government Medical College and Hospital, Patiala. Patients and Methods: A hundred patients between the ages of 20 and 50 years of either gender were divided into two groups of 50 each, and they underwent elective surgery of approximately 1 h duration. Group I received propofol-ketamine while group II received propofol-fentanyl for induction and maintenance of anesthesia. All the results were tabulated and analyzed statistically with student's unpaired t-test and chi-square test. Results : Propofol-fentanyl combination produced a significantly greater fall in pulse rate (PR; 9.28% versus 0.23%) and in both systolic (7.94% versus 0.12%) and diastolic blood pressures (BP; 8.10% versus 0.35%) as compared to propofol-ketamine during induction of anesthesia. Propofol-ketamine combination produced stable hemodynamics during maintenance phase while on the other hand propofol-fentanyl was associated with a slight increase in both PR and BP. During recovery, ventilation score was better in group I while movement and wakefulness score was better in group II. Mean time to protrusion of tongue and lifting of head was shorter in group I. Conclusions : Both propofol-ketamine and propofol-fentanyl combinations produce rapid, pleasant and safe anesthesia with only a few untoward side effects and only minor hemodynamic effects. Keywords: Propofol-ketamine, propofol-fentanyl, total intravenous anesthesia
How to cite this article: Bajwa SJ, Bajwa SK, Kaur J. Comparison of two drug combinations in total intravenous anesthesia: Propofol-ketamine and propofol-fentanyl. Saudi J Anaesth 2010;4:72-9 |
How to cite this URL: Bajwa SJ, Bajwa SK, Kaur J. Comparison of two drug combinations in total intravenous anesthesia: Propofol-ketamine and propofol-fentanyl. Saudi J Anaesth [serial online] 2010 [cited 2023 Mar 24];4:72-9. Available from: https://www.saudija.org/text.asp?2010/4/2/72/65132 |
Introduction | |  |
General anesthesia should provide quick and pleasant induction, predictable loss of consciousness, stable operating conditions, minimal adverse effects, rapid and smooth recovery of protective reflexes and psychomotor functions.
This study was conducted to evaluate and compare two drug combinations of TIVA using propofol-ketamine and propofol-fentanyl and to study the induction characteristics, maintenance of anesthesia and recovery characteristics following anesthesia with these techniques.
The development of anesthesia since its introduction has been erratic, long periods of stagnation being occasionally broken by improvement and advances. General anesthesia has undergone a vast number of improvements and modifications and even its recently modified form total intravenous anesthesia (TIVA; induction as well as maintenance of anesthesia with intravenous agents only) has undergone many improvements ever since its introduction into clinical practice.
Till recently, inhalational agents have remained the routine choice for maintenance of anesthesia. One of the principle reasons is the availability of sophisticated delivery systems for volatile anesthetics, which allows the anesthetists to have a fine degree of control on the concentration administered to the patient. Moreover, monitoring systems that permit nearly accurate measurement of end-tidal concentration of the volatile anesthetics as well as the introduction of new potent volatile agents provide a wider choice of drugs.
In spite of all these advantages, inhalational agents have their own drawbacks and shortcomings that are as follows:
- cost factor
- different specific vaporizers require repeated maintenance
- scavenging system is necessary; otherwise pollution of operation room environment is a big hazard.
TIVA has many advantages over inhalational anesthesia such as
- no operating room pollutions
- minimal cardiac depression
- lesser neurohumoral response
- decreased oxygen consumption
- avoids distension of air-filled spaces within the patient's body, thus producing optimum operating conditions for the surgeon
- avoids postoperative diffusion hypoxemia
- decreases the incidence of postoperative nausea and vomiting (PONV)
- In day care surgery, etc.
Moreover, TIVA can be used not only in well-equipped hospital setting but at remote location also with only oxygen and ventilation facilities.
Various drugs have been tried from time to time in TIVA. Since no single drug can provide all the characteristics of an ideal intravenous agent, several drugs are used in different combinations to provide balanced anesthesia in TIVA, that is, amnesia, hypnosis and analgesia.
In the lookout for an ideal intravenous anesthetic agent in clinical practice, Kay and Rolly introduced propofol in 1977. [1] Its advantage in short surgical procedures relates to its rapid elimination from the blood (half life 1-3 h due to high hepatic clearance) leading to rapid recovery of cognitive and psychomotor functions with a very low incidence of PONV. It is primarily a hypnotic and in subhypnotic doses provides sedation and amnesia. Lack of analgesic properties of propofol has necessitated the need for supplementary analgesic agents during TIVA. Morphine and pethidine have been replaced by newer agents such as fentanyl, sufentanyl, alfentanyl and remifentanyl, which can be given either in multiple bolus incremental doses or in continuous infusion form. Ketamine in subanesthetic doses has gained more attention as an analgesic for TIVA. [2]
Fentanyl is used extensively in TIVA now-a-days. It belongs to opioid group of drugs. It is hundred times more potent analgesic than morphine, and as a part of balanced anesthesia it relieves pain, reduces somatic and autonomic response to airway manipulation, provides hemodynamic stability and lesser respiratory depression. [3]
The combination of these drugs provides complete and balanced anesthesia and has advantages such as high potency, lower dosages and fewer side effects. In the quest for complete anesthesia, various combinations of these new drugs have been tried which include midazolam-ketamine, propofol-ketamine, propofol-fentanyl and many more each with varying results.
Keeping in consideration the merits of TIVA, a case control study was conducted on 100 patients in Department of Anaesthesiology and Intensive care, Government Medical College and Hospital, Patiala.
Patients and Methods | |  |
One hundred adult patients of age between 20 and 60 years and of ASA grade I or II of either sex who underwent elective surgery at Government Medical College and Hospital, Patiala, were included in the study. Patients were divided randomly into two groups of 50 patients each depending upon the drug combinations used.
Following patients were excluded from study: history of allergy to any particular drug, allergy to egg or fat, pregnant females, patients on Monoamine oxidase inhibitors, history of jaundice, extremes of age, duration of surgery lasting for more than 80 minutes.
As a premedication, tablets ranitidine 150 mg + alprazolam 0.25 mg were given, a night before and 2 h before the induction of anesthesia.
Anesthetic technique
Standard anesthetic technique was used in all the patients. After securing intravenous line, monitoring gadgets were attached which included ECG, SpO 2 and noninvasive BP cuff. Baseline parameters were observed and recorded. Injection midazolam (0.08 mg/kg with maximum dose of 5 mg) was given IV 2 minutes before the induction of anesthesia in both the groups.
Induction of anesthesia
Induction of anesthesia in patients of group I was done with propofol 1.0 mg/kg body wt. and ketamine 1.0 mg/kg body wt. given as IV bolus doses. In group II, induction of anesthesia was done with propofol 1.5 mg/kg body wt. and fentanyl 2.0 μg/kg body wt. given as IV bolus doses.
In both the groups, injection succinylcholine was given as a muscle relaxant before intubation in doses of 1.5 mg/kg body wt. with maximum doses not exceeding 100 mg. Patients were ventilated with 100% oxygen via a facemask for 60-90 seconds with the help of Bains circuit, and intubation was done with an appropriate size of cuffed endotracheal tube. Hemodynamic and other monitoring parameters were observed continuously and recorded at an interval of 1 minute each for the first 5 minutes.
Maintenance of anesthesia
In group I, maintenance of anesthesia was achieved with infusion of propofol 2.0 mg/kg/h and ketamine 2.0 mg/kg/h, while in group II, maintenance of anesthesia was achieved with infusion of propofol 2.0 mg/kg/h and fentanyl 2.0 μg/kg/h.
Vecuronium bromide was used as a muscle relaxant in doses of 0.05-0.06 mg/kg body wt. as an initial bolus dose and supplemented with top-ups of 1 mg in both the groups. Hemodynamic and other monitoring parameters were observed continuously and noted at an interval of 5 minutes during the operation. Patients were ventilated with 100% oxygen with close circuit attached to circle absorber system.
Reversal of relaxant effect
All the anesthetic drugs were stopped 5-7 minutes before the anticipated end of surgery. At the end of surgery, neuromuscular blockade was reversed with injection neostigmine 40 μg/kg body wt. and injection glycopyrrolate 10 μg/kg body wt. which was given over 2-3 minutes. Extubation was done when the patients were able to maintain rhythmic respiration and adequate tidal volume. The monitoring parameters were observed continuously and recorded at the time of extubation and 5 minutes after that. The parameters were again recorded every 15 minutes in the recovery room.
Results | |  |
All the results were tabulated and analyzed statistically with student's unpaired t-test and chi-square test.
Four patients (8%) from group I and five patients (10%) from group II had involuntary movements during the induction of anesthesia.
Pulse rate
There was an increase in PR in group I, while there was a slight decrease in PR in group II patients after induction of anesthesia which returned gradually toward baseline during the maintenance phase of anesthesia in both the groups, but the difference in both the groups was statistically significant (P < 0.05). PR increased in both the groups at 1 and 5 minutes after extubation [Table 1].
Blood pressure
There was a fall in BP (systolic and diastolic) during the induction of anesthesia in group II, while there was a slight increase in BP in group I after induction and intubation which was statistically significant (P < 0.05). During maintenance there was gradual recovery toward baseline. During recovery period in both the groups, the BP increased again (1 minute after extubation), which was statistically significant (P < 0.05) but returned toward baseline in the next 20 minutes [Table 2] and [Table 3].
SPO 2
It was found in both the groups that there was very little change in mean SPO 2 values during induction and maintenance of anesthesia as well as during recovery phase.
Recovery
Ventilation score was better in group I during the first 10 minutes of recovery phase as compared to group II [Table 4].
- Mean movement score was better in group II at 5 and 10 minutes [Table 5].
- Wakefulness score was better in group II at 5 and 10 minutes as compared to group I [Table 6].
- The mean time for appearance of protective airway reflexes (coughing and gagging), spontaneous eye opening, tongue protrusion and lifting of head was shorter in group II [Table 7].
- One patient (2%) from group I and three patients (6%) from group II had nausea during the recovery phase while none of them had any episode of vomiting.
Secretions: In group II, four patients had oral secretions during recovery from anesthesia.
Post-ketamine sequelae: Two patients (4%) from group I had excitation postoperatively while none of the patients from group II had excitation or any other post-ketamine sequelae like dreams, hallucinations, euphoria, etc.
Discussion | |  |
The same dosages of propofol and fentanyl have greater impact on elderly as compared to young patients. [4] In older patients, the total dose of propofol administered decreases while other demographic features did not have any effect. [5]
The demographic profile of this study was almost similar to many studies except that of Nielsen et al, which showed greater impact on hemodynamic parameters in elderly patients as compared to young patients. This difference can be attributed to the selection of older age group in their study and they used a higher dose of fentanyl 4 μg/kg as compared to the use of 2.0 μg/kg of fentanyl in this study.
As far as the hemodynamic parameters are concerned, there was a slight decrease in heart rate (9%) in propofol-fentanyl group as compared to propofol-ketamine combination in the study of Mayer et al,[6] and Mi et al. [7] Studies of Mi et al, also showed that after induction, the PR did not alter significantly when propofol was used alone but decreased between 5 and 35% in patients who were given fentanyl 4 μg/kg prior to the induction of anesthesia. [4],[7]
The results of this study are consistent with those obtained in the studies of Mayer and Mi. Increase in heart rate with propofol and ketamine can be explained on the basis of
- cardio stimulant effect of ketamine
- stress response during intubation.
The combination of propofol with fentanyl leads to decrease in heart rate due to the prevention of stress response by fentanyl and and its myocardial depressing effect.
Mi et al, observed greater hemodynamic and electroencephalograph responses to intubation in patients who received propofol than in those who received both propofol and fentanyl (P < 0.05). Hernandez et al, [8] carried out a study with propofol-ketamine, midazolam-ketamine and propofol-fentanyl combinations and observed stable hemodynamics in patients who received propofol and ketamine, whereas patients who had received midazolam-ketamine had significantly higher number of hypertensive peaks. In this study, the increase in mean systolic and diastolic BP in group I patients at 2 minutes may be due to the cardiac stimulant effect of ketamine and mild stress response to intubation, while during induction, maintenance and recovery, BP remained near preinduction values mainly due to the antagonistic properties of propofol (decrease in BP) and ketamine (increase in BP). In group II patients, both the mean systolic and diastolic BP decreased during induction because of the additive action of propofol and fentanyl. [9] Whereas at 2 minutes (just after laryngoscopy and intubation), stress response was prevented mainly by the action of fentanyl. During recovery period, the increase in both systolic and diastolic BP (1 minute after extubation) in both the groups was mainly due to the awakening response to extubation.
The extent and degree of various induction characteristics like loss of consciousness (onset of sleep), [10] loss of eyelash reflex [11] and apnoea during induction [10],[12] showed quite a few similarities as well as differences from other studies and this may be probably due to the variations in the dosages as well as combinations of anesthetic drugs used.
The incidence of side effects like excitatory movements (hiccups, hypertonus, twitching or tremors) was higher with propofol alone during induction than when used in combination with fentanyl. [13] The differences from this study can be explained on the basis that they used propofol alone and that too in higher doses. Pain at injection site, cough and involuntary movements during induction of anesthesia, [5],[14] were present to a lesser degree in this study, and the differences can be ascribed to diminishing of the excitatory effects of propofol at low doses and suppression of excitatory effects by fentanyl and ketamine. Similarly, absence of cough was due to lower dose (2 μg/kg) of fentanyl which was analgesic dose and not the induction dose.
Recovery
A striking feature of the use of these drug combinations in TIVA has been the early recovery. In our study, two methods of recovery from anesthesia have been used.
The first method is the Steward Scoring System [15] which evaluates the recovery from anesthesia by physical evaluation (ventilation, movement, wakefulness). There was slight respiratory depression postoperatively in patients who received propofol-fentanyl as compared to patients who received propofol-ketamine. The slightly lower ventilation score with propofol-fentanyl combination was due to central respiratory depressant effect of fentanyl. [6],[16] Movement score was better in group II as shown by the earlier recovery of voluntary movements in patients as compared to group I patients and were most probably due to longer sedative action of ketamine which leads to late return of voluntary movements. [6] Better wakefulness score in group II may be due to shorter duration of action of fentanyl as compared to ketamine which has increased sedating effect. [8]
The second method of evaluation of recovery which was used in this study was by observing the return of protective airway reflexes like coughing and gagging and response to verbal commands like spontaneous opening of eyes, protrusion of tongue and lifting of head. Spontaneous recovery was achieved much earlier in the propofol-fentanyl group as compared to the propofol-ketamine group. Except for slight respiratory depression which was caused by fentanyl, better recovery score in group II was most probably due to lesser sedative effects of fentanyl as compared to ketamine. [16],[17],[18],[19],[20]
Side effects during recovery
The increased incidence of oral secretions in four patients of group I as compared to none in group II postoperatively may be due to the salivatory effect of ketamine. Slightly higher incidence of nausea in group II may be due to the central emetic effects of fentanyl. [21] But, as a whole, lower incidence of nausea and no incidence of vomiting are attributed to the antiemetic effect of propofol. This is all the more important at low doses and we have used propofol in low doses in this study. Propofol has been used successfully to treat postoperative nausea in a bolus dose of 10 mg and has been successfully used to treat refractory PONV.
Two patients (4%) from group I had excitation postoperatively while no patient from group II had this side effect, and this can be explained on the basis of lower dosage of ketamine used (1 mg/kg) in this study. [8] There were no other complication like awareness, mood changes, agitation, and all the patients were satisfied with the anesthetic technique used and described it as pleasant.
Conclusions | |  |
In conclusion, the results of this study suggest that both propofol-ketamine and propofol-fentanyl combinations produce rapid, pleasant and safe anesthesia with only a few untoward side effects and only minor hemodynamic fluctuations. Although propofol-fentanyl combination produced hypotension during induction of anesthesia, it prevented stress-response during laryngoscopy and intubation. Propofol-ketamine combination produced stable hemodynamics during maintenance phase, while on the other hand propofol-fentanyl was associated with slight increase in both PR and BP during maintenance phase. There was a slight respiratory depression during recovery in patients who received propofol-fentanyl as was evident from the ventilation score. But on the other hand other recovery characteristics like awakening time and response to verbal commands were better in the propofol-fentanyl group. However, as far as recovery is concerned, one of the most important areas in evaluating day care surgical procedures, both propofol-ketamine and propofol-fentanyl are associated with smooth and swift recovery with minimal residual impairment of mental functioning which are due to their significant metabolism, short elimination half life and extremely high total body clearance.
So it may be recommended that both propofol-ketamine and propofol-fentanyl can be used as an excellent combination in TIVA for both elective and day care surgery where minimal side effects and early recovery are desired.
References | |  |
1. | Kay B, Rolly G. ICI 35868 a new intravenous induction agent. Acta Anaes Belgica 1977;28:303-16. |
2. | Slogoff S, Allen GW. The role of baroreceptors in the cardiovascular response to ketamine. Anesth Analg 1974;53:704. [PUBMED] [FULLTEXT] |
3. | Murat I, Levron JC, Berg A, Saint-Maurice C. Effects of fentanyl on baroreceptor reflex control of heart rate in newborn infants. Anesthesiology 1988;68:712-22. |
4. | Nielsen PF, Ahlburg P, Sosted EE, Christensen JH. The dosage-effect-curves for propofol in young and elderly patients and modifications of these following fentanyl. Ugeskr Laeger 1992;154:1907-10. |
5. | Benito MC, Gonzalez-Zarco LM, Navia J. Total intravenous anesthesia in general surgery. Rev Esp Anestesiol Reanim 1994;41:292-5. |
6. | Mayer M, Ochmann O, Doenicke A, Angster R, Suttmann H. The effect of propofol-ketamine anesthesia on hemodynamics and analgesia in comparison with propofol-fentanyl. Anaesthesist 1990;39:609-16. [PUBMED] |
7. | Mi WD, Sakai T, Takahashi S, Matsuki A. Haemodynamic and electroencephalograph responses to intubation during induction with propofol or propofol/fentanyl. Can J Anaesth 1998;45:19-22. [PUBMED] |
8. | Hernandez C, Parramon F, Garcia-Velasco P, Vilaplana J, Garcνa C, Villalonga A. Comparative study of 3 techniques for total intravenous anesthesia: Midazolam-ketamine, propofol-ketamine, and propofol-fentanyl. Rev Esp Anestesiol Reanim 1999;46:154-8. |
9. | Billard V, Moulla F, Bourgain JL. Megnigbeto A, Stanski DR. Hemodynamic response to induction and intubation: Propofol/fentanyl interaction. Anesthesiology 1994;81:1384-93. |
10. | Hui TW, Short TG, Hong W, Suen T, Gin T, Plummer J. Additive interactions between propofol and ketamine when used for anesthesia induction in female patients. Anesthesiology 1995;82:641-8. [PUBMED] [FULLTEXT] |
11. | Kurt E, Cosar A, Bilgin F. Comparison of the combinations of propofol/ketamine, propofol/fentanyl and propofol/alfentanyl on the quality of induction, intubation, hemodynamics and recovery, for providing analgesia in TIVA. Minerva Anestesiol 1990;56:817-9. |
12. | Gill SS, Wright EM, Reilly CS. Pharmacokinetic interaction of propofol and fentanyl: Single bolus injection study. Br J Anaesth 1990;65:760-5. [PUBMED] [FULLTEXT] |
13. | Ghabash M, Matta M, Kehhaleh J. Depression of excitatory effects of propofol induction by fentanyl. Middle East J Anesthesiol 1996;13:419-25. [PUBMED] |
14. | Phua WT, Teh BT, Jong W, Lee TL, Tweed WA. Tussive effect of a fentanyl bolus. Can J Anaesth 1991;38:330-4. [PUBMED] |
15. | Steward DJ. A simplified scoring system for the postoperative recovery room. Canad Anaesth Soc J 1975;22:111-2. [PUBMED] |
16. | Schuttler J, Schuttler M, Kloos S, Nadstawek J, Schwilden H. Optimal dosage strategies in total intravenous anesthesia using propofol and ketamine. Anaesthesist 1991;40:199-204. |
17. | Dunnihoo M, Wuest A, Meyer M, Robinson M. The effects of total intravenous anesthesia using propofol, ketamine, and vecuronium on cardiovascular response and wake up time. AANA J 1994;62:261-6. [PUBMED] |
18. | Bell J, Sartain J, Wilkinson GA, Sherry KM. Propofol and fentanyl anaesthesia for patients with low cardiac output state undergoing cardiac surgery: Comparison with high-dose fentanyl anaesthesia. Br J Anaesth 1994;73:162-6. [PUBMED] [FULLTEXT] |
19. | Kazama T, Ikeda K, Morita K, Sanjo Y. Awakening propofol concentration with and without blood-effect site equilibration after short-term and long-term administration of propofol and fentanyl anesthesia. Anesthesiology 1998;88:928-34. [PUBMED] [FULLTEXT] |
20. | Han T, Kim D, Kil H, Inagaki Y. The effects of plasma fentanyl concentrations on propofol requirement, emergence from anesthesia, and postoperative analgesia in propofol-nitrous oxide anesthesia. Anesth Analg 2000;90:1365-71. [PUBMED] [FULLTEXT] |
21. | Jakobsson J, Oddby E, Rane K. Patient evaluation of four different combinations of intravenous anaesthetics for short outpatient procedures. Anaesthesia 1993;48:1005-7. [PUBMED] |
[Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7]
This article has been cited by | 1 |
Comparison of the Effect of Ketamine and Dexmedetomidine Combined with Total Intravenous Anesthesia in Laparoscopic Cholecystectomy Procedures: A Prospective Randomized Controlled Study |
|
| E. Efe Mercanoglu, N. Girgin Kelebek, G. Turker, H. Aksu, M. Ozgur, Z. Karakuzu, S. Turkcan, B. Ozcan, Ahmad Mansour | | International Journal of Clinical Practice. 2022; 2022: 1 | | [Pubmed] | [DOI] | | 2 |
Comparison of Propofol-Fentanyl Versus Propofol-Ketamine Combination as Total Intravenous Anesthesia in Maxillofacial Surgical Procedures – A Prospective Randomized Controlled Study |
|
| Dani Mihir Tusharbhai, Mohan Baliga, Shaila Kamath, Aananya Mishra | | Biomedical and Pharmacology Journal. 2022; 15(2): 935 | | [Pubmed] | [DOI] | | 3 |
A retrospective study of the effect of dexmedetomidine infusion in cochlear implant surgery among pediatric patients |
|
| Vishwal I Patel, Darshna Dhedhi, Komal Pandya, Gaurav Sharma, Richa Patel | | Indian Journal of Clinical Anaesthesia. 2022; 9(1): 71 | | [Pubmed] | [DOI] | | 4 |
A COMPARISON OF PROPOFOL, ETOMIDATE AND KETOFOL AS INDUCTION AGENT: A RANDOMIZED CLINICAL STUDY |
|
| Meenakshi Machhar, Khemraj Meena, Basant Dindor, Ravindra Kr. Gehlot, Santosh Choudhary, Rajesh Kr. Bhabhor | | INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH. 2022; : 46 | | [Pubmed] | [DOI] | | 5 |
Comparison of a ketamine-propofol combination and etomidate for anaesthesia induction on haemodynamic parameters in patients undergoing coronary artery bypass grafting |
|
| A Luna, A Gupta, S Aggarwal | | Southern African Journal of Anaesthesia and Analgesia. 2022; 28(4): 151 | | [Pubmed] | [DOI] | | 6 |
Dexmedetomidine versus fentanyl in intraoperative neuromuscular monitoring using propofol based total intravenous anesthesia regimen in kyphoscoliosis correction surgery |
|
| Neha Amey Panse, Jyoti Vishnu Kale, Tejaswini Lalasaheb Phalke, Utkarsha Pradeep Bhojane | | Ain-Shams Journal of Anesthesiology. 2021; 13(1) | | [Pubmed] | [DOI] | | 7 |
Propofol suppressed cell proliferation and enhanced apoptosis of bladder cancer cells by regulating the miR-340/CDK2 signal axis |
|
| Su-Hong Tan, Hui-Juan Ding, Xi-Ping Mei, Ji-Tong Liu, Yi-Xun Tang, Yuan Li | | Acta Histochemica. 2021; 123(5): 151728 | | [Pubmed] | [DOI] | | 8 |
Atomistic Molecular Dynamics Simulations of Propofol and Fentanyl in Phosphatidylcholine Lipid Bilayers |
|
| Christopher Faulkner, David Santos-Carballal, David F. Plant, Nora H. de Leeuw | | ACS Omega. 2020; 5(24): 14340 | | [Pubmed] | [DOI] | | 9 |
In silico studies of the interactions between propofol and fentanyl using Gaussian accelerated molecular dynamics |
|
| Christopher Faulkner, Nora H. de Leeuw | | Journal of Biomolecular Structure and Dynamics. 2020; : 1 | | [Pubmed] | [DOI] | | 10 |
Re-emergence of TIVA in COVID times |
|
| Tushar Chokshi, Shivakumar Channabasappa, DaviesC Vergheese, SukhminderJit Singh Bajwa, Bhavna Gupta, Lalit Mehdiratta | | Indian Journal of Anaesthesia. 2020; 64(14): 125 | | [Pubmed] | [DOI] | | 11 |
A Comparative Study of Propofol-Ketamine and Propofol-Fentanyl for Total Intravenous Anaesthesia |
|
| Pavani Sudhamala, Kousalya Chakravarthy | | Journal of Evidence Based Medicine and Healthcare. 2020; 7(23): 1119 | | [Pubmed] | [DOI] | | 12 |
Comparative study of etomidate and fentanyl citrate with propofol (1%) and fentanyl citrate for total intravenous anaesthesia in short surgical procedures |
|
| Raushan Kumar Jha, Atikahmed Gulamdastagir Momin, Madhuri A Bhade | | Indian Journal of Clinical Anaesthesia. 2020; 7(2): 348 | | [Pubmed] | [DOI] | | 13 |
Hemodynamic Responses to Two Different Anesthesia Regimens in Compromised Left Ventricular Function Patients Undergoing Coronary Artery Bypass Graft Surgery: Etomidate-Midazolam Versus Propofol-Ketamine |
|
| Nahid Aghdaii,Mohsen Ziyaeifard,Seyedeh Zahra Faritus,Rasoul Azarfarin | | Anesthesiology and Pain Medicine. 2015; 5(3) | | [Pubmed] | [DOI] | | 14 |
Propofol dexmedetomidine versus propofol ketamine for anesthesia of endoscopic retrograde cholangiopancreatography (ERCP) (A randomized comparative study) |
|
| Mai W. Abdalla,Sahar M. El Shal,Ahmed I. El Sombaty,Nasr M. Abdalla,Rasha B. Zeedan | | Egyptian Journal of Anaesthesia. 2015; 31(2): 97 | | [Pubmed] | [DOI] | | 15 |
Assessment of Common Anaesthetic and Clinical Indices of Multimodal Therapy of Propofol, Xylazine, and Ketamine in Total Intravenous Anaesthesia in West African Dwarf Goat |
|
| Ukwueze Celestine Okwudili,Eze Chinedu Athanasius,Udegbunam Rita Ijeoma | | Journal of Veterinary Medicine. 2014; 2014: 1 | | [Pubmed] | [DOI] | | 16 |
Predictors of Acute Kidney Injury in Geriatric Patients Undergoing Total Knee Replacement Surgery |
|
| Vishal Sehgal,Sukhminder Jit Singh Bajwa,Rinku sehgal,Jeremiah Eagan,Praveen Reddy,Samuel M. Lesko | | International Journal of Endocrinology and Metabolism. 2014; 12(3) | | [Pubmed] | [DOI] | | 17 |
Comparación del tiempo de despertar y tiempo de descarga entre dos técnicas de anestesia total intravenosa: remifentanilo vs fentanilo |
|
| Diana Carolina Pérez López,Geovanny Rodríguez Sánchez,José Rafael Tovar Cuevas,Alberto Vanegas Saavedra | | Revista Colombiana de Anestesiología. 2013; 41(4): 250 | | [Pubmed] | [DOI] | | 18 |
Comparison of emergence and discharge times between two Total Intravenous Anesthesia techniques: Remifentanil and Fentanyl |
|
| Diana Carolina Pérez López,Geovanny Rodríguez Sánchez,José Rafael Tovar Cuevas,Alberto Vanegas Saavedra | | Colombian Journal of Anesthesiology. 2013; 41(4): 250 | | [Pubmed] | [DOI] | | 19 |
Anaesthesia considerations and implications during oncologic and non-oncologic surgery in cancer patients |
|
| Sukhminder Jit Singh Bajwa,Ashish Kulshrestha | | Apollo Medicine. 2013; | | [Pubmed] | [DOI] | | 20 |
Anaesthesia considerations and challenges during renal transplantation: Current perspectives |
|
| Sukhminder Jit Singh Bajwa,Ashish Kulshrestha | | Apollo Medicine. 2012; 9(2): 126 | | [Pubmed] | [DOI] | |
|
 |
|
|