Saudi Journal of Anaesthesia

ORIGINAL ARTICLE
Year
: 2010  |  Volume : 4  |  Issue : 2  |  Page : 63--67

Mixed venous versus central venous oxygen saturation in patients undergoing on pump beating coronary artery bypass grafting


Ahmad Alshaer1, Mohamed Essam Abdel-Meguid2, Osama Ibraheim3, Khaled Fawzi4, Ibrahim AbdulSalam5, Saad Sheta3, Khaled M Abdullah6, Ahmed El-Demerdash1, Raed Al-Satli1, Mohamed AbdelAll7, Bakir M Bakir7, Nezar AlNahal7, Yasser Abdulrahman7, Hanaa AlHamoud8,  
1 Cardiac Anesthesia Division, King Fahad Cardiac Center, Riyadh, Saudi Arabia
2 Consultant Cardiac Anaesthesia, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
3 Department of Anaesthesia, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
4 Anesthesia Department, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
5 Anaesthesia Department, Ain Shams University, Cairo, Egypt
6 Consultant Cardiac Anaesthesia, King Fahad National Guard Hospital, Riyadh, Saudi Arabia
7 Cardiac Surgery Division, King Fahad Cardiac Center, King Saud University, Riyadh, Saudi Arabia
8 Department of Surgery, King Saud University, Riyadh, Saudi Arabia

Correspondence Address:
Ahmad Alshaer
Assistant Professor and Consultant of Cardiac Anesthesia, King Fahad Cardiac Center, College of medicine, King Saud University, Riyadh
Saudi Arabia

Abstract

Objective: To examine the validity of central venous oxygen saturation (ScvO 2 ) as a numerical substitution of mixed venous oxygen saturation (SvO 2 ) in adult patients undergoing normothermic on pump beating coronary artery bypass grafting (CABG). Materials and Methods: Prospective clinical observational study was done at King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia. Thirty four adult patients scheduled for coronary artery surgery were included. Patients were monitored by a pulmonary artery catheter (PAC) as a part of our routine intraoperative monitoring. SvO 2 and ScvO 2 were simultaneously measured 15 minutes (T1) and 30 minutes (T2) after induction of anesthesia, 15 and 30 minutes after initiation of cardiopulmonary bypass (T3 and T4), and 15 and 30 minutes after admission to intensive care unit (T5 and T6). Results: ScvO 2 showed higher reading than SvO 2 all through our study. Our results showed perfect positive statistically significant correlation between SvO 2 and ScvO 2 at all data points. Individual mean of difference (MOD) between both the readings at study time showed MOD of 1.34 and 1.44 at T1 and T2 simultaneously. This MOD was statistically insignificant, but after on pump beating normothermic bypass was initiated; MOD was 5.2 and 4.4 at T3 and T4 with high statistical significance. In ICU, MOD continues to have high statistical significance, MOD was 6.3 at T5 and at T6 it was 4.6. Conclusions: In on pump beating CABG patients; ScvO 2 and SvO 2 are not interchangeable numerically. ScvO 2 is useful in the meaning of trend; our data suggest that ScvO 2 is equivalent to SvO 2 , only in the course of clinical decisions as long as absolute values are not required.



How to cite this article:
Alshaer A, Abdel-Meguid ME, Ibraheim O, Fawzi K, AbdulSalam I, Sheta S, Abdullah KM, El-Demerdash A, Al-Satli R, AbdelAll M, Bakir BM, AlNahal N, Abdulrahman Y, AlHamoud H. Mixed venous versus central venous oxygen saturation in patients undergoing on pump beating coronary artery bypass grafting.Saudi J Anaesth 2010;4:63-67


How to cite this URL:
Alshaer A, Abdel-Meguid ME, Ibraheim O, Fawzi K, AbdulSalam I, Sheta S, Abdullah KM, El-Demerdash A, Al-Satli R, AbdelAll M, Bakir BM, AlNahal N, Abdulrahman Y, AlHamoud H. Mixed venous versus central venous oxygen saturation in patients undergoing on pump beating coronary artery bypass grafting. Saudi J Anaesth [serial online] 2010 [cited 2020 May 31 ];4:63-67
Available from: http://www.saudija.org/text.asp?2010/4/2/63/65129


Full Text

 Introduction



Mixed venous oxygen saturation (SvO 2 ) is a valuable measurement in hemodynamically unstable patients during cardiac surgery. [1],[2] SvO 2 has been used to assess to what extent the cardiopulmonary system meets the metabolic demands of the various tissues and to provide an index of tissue oxygenation. [3] Furthermore, it allows calculation of tissue oxygen consumption, oxygen extraction ratio, and the degree of pulmonary venous admixture. [4] However, SvO 2 measurement is obtained only from a correctly positioned pulmonary artery catheter (PAC).

Significant complications are associated with the use of a PAC. [5],[6] As such, central venous oxygen saturation (ScvO 2 ) represents an attractive alternative to SvO 2 because central venous catheterization is easier and less invasive than pulmonary artery (PA) catheterization. [7]

The clinical applicability of substituting ScvO 2 for SvO 2 in different clinical situations is still not fully studied. Open heart surgery is a unique clinical situation where there is a great variation during the surgery in hemodynamic and filling indices.

In a previous study, [8] we aimed to examine the correlation between ScvO 2 sampled from a standalone central venous line (CVL) and SvO 2 sampled from PAC port, to test the validity of the clinical applicability of substituting ScvO 2 from CVL for SvO 2 in adult patients with poor myocardial function undergoing open heart coronary artery bypass grafting surgery (CABG). [8] In the current study, we are testing the same hypothesis in patients with normal functioning myocardium undergoing CABG using the on pump beating technique, while measuring the ScvO 2 from a proximal PAC port.

 Materials and Methods



After obtaining approval from the Institutional Review Board at the College of Medicine, King Saud University, Riyadh, KSA, and informed consent from each participant, we studied 34 patients scheduled to undergo CABG using on pump beating normothermic cardiopulmonary bypass.

The present study is a prospective observational study. Thirty four adult patients of either sex, aged above 40 years, suffering from coronary heart disease with normal myocardial function, scheduled for elective CABG surgery were included in the study.

A standardized balanced anesthetic technique was used for all the patients; patients were premedicated with lorazepam 2 mg orally at the night of surgery and morphine 0.1 mg/kg IM preoperatively. On receiving the patient in operating room, standard monitoring was instituted. Peripheral venous as well as radial artery cannulae were inserted. Induction is with sufentanil 1-1.5 μg/kg, midazolam 0.05-0.1 mg/kg, and rocuronium 0.9 mg/kg, then a maintenance infusion of the same induction agents, that is, sufentanil 0.2 μg/kg/h, midazolam 1.5 μg/kg/h and rocuronium 0.5 mg/kg/h supplemented with sevoflurane was given as required. Induction doses as well as anesthetic maintenance supplementation were guided by BIS® monitoring (Aspect medical Systems, inc, Norwood, Massachusetts, USA ), and signs of lack of analgesia correlated with hemodynamic changes were managed as appropriate. A PAC was inserted after induction of anesthesia enabling monitoring of SvO 2 , ScvO 2 as well as other derived parameters. The lungs were mechanically ventilated with a tidal volume of 8 mL/kg and FiO 2 of 0.4 oxygen in air mixture, while ventilatory rate was adjusted to maintain a PaCO 2 of 32-36 mmHg.

A 7.5F PAC (Edwards Lifesciences; Irvine, CA, USA) that was 110 cm in length and had the right atrial lumen positioned 30 cm from the tip was inserted through the internal jugular vein using a percutaneous 8.5F sheath introducer (Edwards Lifesciences). A pressure tracing obtained from the proximal PAC port was used to ascertain correct positioning in the right atrium (RA). Postoperative portable chest radiograph and the presence of PA pressure tracings confirmed the location of the distal port in the PA.

Immediately after the insertion of the PAC, each patient had one set of paired blood samples drawn in random order simultaneously from the distal and proximal ports of PAC. The first 2 mL blood drawn for each sample was discarded to prevent contamination with flushing fluid. Blood was sampled from distal PAC port while the catheter balloon deflated. We then measured the pulmonary artery occlusive pressure (PAOP) and cardiac output (CO) by the thermo dilution method as well as other hemodynamic calculations.

Previous data were collected 15 and 30 minutes after induction of anesthesia (T1, T2), 15 and 30 minutes after initiation of cardiopulmonary bypass (T3, T4) and 15 and 30 minutes postadmission to intensive care unit (T5 and T6).

Blood samples were drawn simultaneously from the PA and RA at six different data points mentioned. A standard volume of 1 mL blood was obtained from each site, and oxygen saturations per blood sample were determined using the blood gas analyzer (QS 50; ; Radiometer, Copenhagen, Denmark).

All surgeries were done by the same surgeon, using the on pump beating normothermic cardiopulmonary bypass.

Data analysis

Data were analyzed using statistical software package (Graph Pad In Stat; version 3.00 for Windows, Graph Pad Software Inc., San Diego, CA, USA) and presented as numbers, mean (standard deviation [SD]), or ratio. Data were compared using the parametric or the nonparametric versions of analysis of variance (ANOVA) followed by the appropriate post hoc analysis if significance was detected. P values t-test with levels of significance adjusted according to the method of Bonferroni for multiple comparisons. P 2 and ScvO 2 was evaluated by linear regression analysis and Pearson test followed by the F test. Mean of difference (MOD) between simultaneously measured SvO 2 and ScvO 2 individual values were calculated. The Student's t-test was used to determine whether the mean difference was significantly different from zero.

 Results



Patients' demographic and operative data are shown in [Table 1]. The measured hemodynamic parameters and hemoglobin concentration values are listed in [Table 2]. Other parameters assessed such as Cardiac Index, PAOP and CVP were not applicable during bypass (T3 and T4).

ScvO 2 showed higher values than SvO 2 all through our study [Table 3]. Data showed perfect positive statistically significant correlation between SvO 2 and ScvO 2 at all study times, individual MOD between both the readings at study time showed MOD of 1.34 and 1.44 at T1 and T2 simultaneously, this MOD was statistically insignificant; but after bypass was initiated, MOD was 5.2 and 4.4 at T3 and T4 with high statistical significance; after bypass MOD continues to have high statistical significance, it was 6.3 at T5 and at T6 it was 4.6 [Table 3].

 Discussion



In the present study, blood was taken from the RA to be representative of whole body central venous blood. Presumably, this position placed the ScvO 2 sampling site sufficiently distal into the RA to allow for the mixing of blood from the superior and inferior venacavae.

Results showed a lower value of SvO 2 compared to ScvO 2, a possible explanation for the decrease in SO 2 from ScvO 2 to SvO 2 is the myocardial extraction of O 2 as blood flows through the right ventricle into the PA. Although, to our knowledge, the rate of O 2 diffusion from ventricular blood into the myocardium has not been quantified, we consider this possibility unlikely. A more likely hypothesis is that atrial blood, as it moves toward the PA, mixes with blood of lower O 2 content. It is also possible that decrease in SvO 2 resulted from blood mixing with blood draining from coronary sinus in RA and the Thebesian veins in the right ventricle. [10]

Experimental studies in animals showed an excellent correlation between ScvO 2 and SvO 2 . Reinhart et al. [11] found a Spearman correlation coefficient of 0.97 in anesthetized dogs over a broad range of cardio-respiratory conditions, including hypoxia, hemorrhage, and resuscitation. Schou et al. [12] also found a correlation coefficient of 0.97 between ScvO 2 and SvO 2 in pigs that had been subjected to conditions of graded hypoxemia. Of note, both studies found SvO 2 to be consistently lower than ScvO 2 .

Our data showed perfect positive statistically significant correlation between SvO 2 and ScvO 2 at all data points [Table 3] and [Figure 1]a-f.

In the present study, individual mean of difference between both the readings at data points showed MOD of 1.34 and 1.44 at T1 and T2 simultaneously. This MOD was statistically insignificant, meaning that they are interchangeable numerically; but after bypass was initiated, MOD was 5.2 and 4.4 at T3 and T4 with high statistical significance. In the ICU; MOD continues to have high statistical significance, MOD was 6.3 at T5 and 4.6 at T6. The poor agreement between the values of SvO 2 and ScvO 2 after initiation of cardiopulmonary bypass presented here may be secondary to the acute changes in hemodynamics accompanying the shift to CPB with hemodilution and the nonpulsatile flow pattern. Moreover, catheter position might be altered while cannulating the RA for bypass and by myocardial manipulation during surgery. This agrees with other studies [13],[14] comparing measures of ScvO 2 and SvO 2 in critically ill patients. Similarly, poor agreement results appeared with other studies comparing SvO 2 and ScvO 2 in hemodynamically unstable patients. These studies were performed outside the context of cardiac surgery, with heterogeneous groups of patients in septic, [15] cardiogenic, [16] and neurogenic shock, [17] and all of them reported a poor agreement between SvO 2 and ScvO 2 individual values. Schmitz et al. [17] showed also that patients with normal cardiac index values, ScvO 2, could not be substituted for SvO 2 after cardiac surgery with cardiopulmonary bypass.

In our previous study, [8] we found the same pattern of oxygen saturation reduction while the blood moves from RA to the PA and a positive correlation between the readings obtained from the measured samples, but we could not find relation between RA and PA data.

Limitations of the study

In spite of the care taken to have the PAC positioned accurately, its position is bound to be altered by the insertion of atrial cannulae for bypass, and by cardiac mobilization during surgery.

 Conclusions



In CABG patients; ScvO 2 and SvO 2 are not interchangeable numerically as they have failed to keep insignificant MOD when normothermic CPB was used, but had strong positive and significant correlations throughout the operative course. This makes ScvO 2 useful in the meaning of trend; these data suggest that ScvO 2 is equivalent to SvO 2 in the course of clinical decisions as long as absolute values are not required.

 Acknowledgements



We gratefully acknowledge the technical assistance of Mr. M Akbar Khan, Chief Cardiac Anesthesia Technician, King Fahad Cardiac Center, King Saud University, Riyadh, KSA, and Mr. Hasan Abo Kishk, Cardiac Anesthesia Technician, King Fahad Cardiac Center, King Saud University, Riyadh, KSA.

References

1O'Connor JP, Townsend GE. Perioperative continuous monitoring of mixed venous oxygen saturation should be routine during high-risk cardiac surgery. J Cardiothorac Anesth 1990;4:647-50.
2Polonen P, Ruokonen E, Hippelainen M, Pφyhφnen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000;90:1052-9.
3Nelson LD. Continuous venous oximetry in surgical patients. Ann Surg 1986;203:329-33.
4McGrath RB. Invasive bedside hemodynamic monitoring. Prog Cardiovasc Dis 1986;29:129-44.
5Ducatman BS, McMichan JC, Edwards WD. Catheter-induced lesions of the right side of the heart. A one-year prospective study of 141 autopsies. JAMA 1985;253:791-5.
6McArthur CJ. Cardiovascular monitoring in sepsis: Why pulmonary artery catheters should not be used. Crit Care Resusc 2006;8:256-9.
7Djaiani G, Karski J, Yudin M, Hynninen M, Fedorko L, Carroll J, et al. Clinical outcomes in patients undergoing elective coronary artery bypass graft surgery with and without utilization of pulmonary artery catheter-generated data. J Cardiothorac Vasc Anesth 2006;20:307-10.
8Ibrahim O, Alshaer A, Elegued MA, Sheta S. Correlation between mixed venous and central venous oxygen saturation in patients undergoing CABG. Egypt Heart J 2009;61:2.
9Edwards JD, Mayall RM. Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med 1998;26:1356-60.
10Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation 1969;40:165-72.
11Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 2004;30:1572-8.
12Schou H, Perez de Sa V, Larsson A. Central and mixed venous blood oxygen correlate well during acute normovolemic hemodilution in anesthetized pigs. Acta Anaesthesiol Scand 1998;42:172-7
13Krafft P, Steltzer H, Hiesmayr M, Klimscha W, Hammerle AF. Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest 1993;103:900-6.
14Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000;90:1052-9.
15Faber T. Central venous versus mixed venous oxygen content. Acta Anaesthesiol Scand Suppl 1995;107:33-6.
16Lee J, Wright F, Barber R, Stanley L. Central venous oxygen saturation in shock: A study in man. Anesthesiology 1972;36:472-8.
17Lequeux PY, Bouckaert Y, Sekkat H, Van der Linden P, Stefanidis C, Huynh CH, et al. Could central venous oxygen saturation be an attractive alternative to mixed venous oxygen saturation in cardiac surgery with cardiopulmonary bypass. Eur J Anaesthesiol 2005;22:A74.