Previous article Table of Contents  Next article

CASE REPORT
Year : 2015  |  Volume : 9  |  Issue : 4  |  Page : 480-483

Low tracheal tumor and airway management: An anesthetic challenge


1 Department of Anesthesia and Critical Care, Government Medical College and Hospital, Chandigarh, India
2 Department of Surgery, Government Medical College and Hospital, Chandigarh, India
3 Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India

Correspondence Address:
Richa Saroa
1208, Sector 32B, Chandigarh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1658-354X.159483

Rights and Permissions
Date of Web Publication16-Sep-2015
 

  Abstract 

We describe a case presenting with tracheal tumor wherein a Microlaryngeal tube was advanced into the trachea distal to the tumor for primary airway control followed by cannulation of both endobronchial lumen with 5.5 mm endotracheal tubes to provide independent lung ventilation post tracheal transection using Y- connector attached to anesthesia machine. The plan was formulated to provide maximal surgical access to the trachea while providing adequate ventilation at the same time. A 32 yrs non smoker male, complaining of cough, progressive dyspnea and hemoptysis was diagnosed to have a broad based mass in the trachea on computed tomography of chest. Bronchoscopy of the upper airway confirmed presence of the mass at a distance of 9 cms from the vocal cords, obstructing the tracheal lumen by three fourth of the diameter. The patient was scheduled to undergo the resection of the mass through anterolateral thoracotomy. We recommend the use of extralong, soft, small sized microlaryngeal surgery tube in tumors proximal to carina, for securing the airway before the transection of trachea and bilateral endobronchial intubation with small sized cuffed endotracheal tubes for maintenance of ventilation after the transection of trachea in patients with mass in the lower trachea.

Keywords: Anesthetic management, Microlaryngeal Tube, tracheal tumour


How to cite this article:
Saroa R, Gombar S, Palta S, Dalal U, Saini V. Low tracheal tumor and airway management: An anesthetic challenge . Saudi J Anaesth 2015;9:480-3

How to cite this URL:
Saroa R, Gombar S, Palta S, Dalal U, Saini V. Low tracheal tumor and airway management: An anesthetic challenge . Saudi J Anaesth [serial online] 2015 [cited 2020 Apr 3];9:480-3. Available from: http://www.saudija.org/text.asp?2015/9/4/480/159483


  Introduction Top


Primary tracheal tumors are rare with an estimated incidence of 2.7 new cases per million per year. [1] Patients usually present with nonspecific symptoms followed by progressive airway obstruction thus necessitating treatment. Tumor resection followed by tracheal anastomosis is considered to be the definitive treatment for both malignant as well as benign tumors. [2] Since airway is shared by both surgeon and anesthesiologist during tracheal resection, it is imperative to maintain ventilation, while allowing free surgical access at the same time. [3] It is therefore important to anticipate problems and formulate airway management options in the preoperative period for successful perioperative anesthetic management.


  Case Report Top


The patient has given consent for the clinical details of the case to be published in a medical journal.

A 32-year-old male weighing 70 kg presented to Respiratory Medicine department of our hospital with a history of cough, progressive dyspnea and hemoptysis. Dyspnea was positional in nature, relieved in lateral and sitting position. The patient was a chronic smoker and had quit smoking 1 year back. Auscultation of the chest revealed bilateral monophonic wheeze and conducted sounds. The chest X-ray revealed loss of lung volume and collapse of the lower lobe on the left side. The arterial blood gas analysis at the time of admission revealed PaO 2 of 54.4 mmHg on room air which improved to 71 mmHg after nebulization and bronchodilator therapy. Preoperative pulmonary function tests revealed obstructive ventilation defects with reduced vital capacity, and flow volume loops demonstrated flow limitation during both phases of respiration. Computed tomography scan of the neck and thorax revealed a 21 mm × 17 mm × 15 mm broad base mass arising from the left posterolateral wall of the trachea, occluding the tracheal lumen by 80% and located 1.5 cm proximal to carina [Figure 1]. Preoperative bronchoscopy confirmed a tracheal mass 9 cm from the vocal cords obstructing approximately three-fourth of the tracheal lumen [Figure 2]. It was possible to negotiate a 6.0 mm outer diameter bronchoscope (Pentax video bronchoscope EB-1570, Pentax Corporation, Europe GmbH) through the space available in posterolateral aspect, beyond which the carina was clearly visible and free of any infiltration. An apparently vascular mass did not bleed on fine needle aspiration biopsy. The tissue biopsy revealed the mass to be an adenocarcinoma and therefore the patient was scheduled for resection of the tumor with primary anastomosis of the trachea through right anterolateral thoracotomy. The airway was evaluated as Mallampati class I and other biochemical and hematological parameters were normal. Patient received a course of broad spectrum antibiotics, bronchodilator therapy and nebulization preoperatively.
Figure 1: Contrast enhanced computed tomography chest showing 21 mm × 17 mm × 15 mm mass in the trachea

Click here to view
Figure 2: Preoperative bronchoscopy showing pedunculated mass arising from the left wall of trachea lumen

Click here to view


Since it was possible to negotiate a 6.0 mm bronchoscope beyond the tumor on preoperative bronchoscopy, it was decided to place 32 cm long 5.5 mm internal diameter micro laryngeal surgery (MLS, Ivory polyvinyl chloride [PVC]) tube distal to the tumor for primary airway control. Alternatives in case of failure to negotiate the growth were also kept in mind. Therefore, a set of graduated rigid bronchoscopes with the presence of an experienced otorhinolaryngologist was ensured until the primary control of airway was attained.

Standard noninvasive monitoring was done using anesthesia monitor (S/5 critical care monitor, Datex Ohmeda, Helsinki, Finland). An arterial cannula was placed in the left radial artery for invasive blood pressure monitoring and arterial gas analysis. Awake fiberoptic intubation was done after topical anesthesia of the upper airway in a position in which patient reported least discomfort that is, 30° head up and slight right up tilt. Under fiberoptic guidance, a 5.5 mm ID MLS tube was placed distal to the growth but proximal to carina. After confirming the placement through fiberoptic bronchoscope (FOB), the patient was anesthetized and paralyzed with injection propofol 2 mg/kg, fentanyl 2 μg/kg and vecuronium 0.1 mg/kg. Prior to the positioning, patient started desaturating with SpO 2 falling to 70%. On auscultation, breath sounds were absent on the left side. Thinking that the endotracheal tube (ETT) might have migrated to the right main stem bronchus, the tube was withdrawn gradually till bilateral breath sounds were present. The SpO 2 gradually improved to 95%. Fiberoptic examination revealed the MLS tube still distal to the tumor and proximal to carina. Patient was positioned as desired for the surgery. Anesthesia was maintained in air: O 2 with FiO 2 0.5, propofol infusion at 3-4 mg/kg/h and fentanyl infusion at 2 μg/kg/h. After anterolateral thoracotomy and surgical exposure, tracheal wall was incised below the tumor and a sterile 5.0 mm cuffed PVC ETT was placed in left main stem bronchus (MSB) by the operating surgeon and connected through a Bain's circuit (enclosed in a sterile drape) to a separate anesthesia workstation for ventilation of the left lung. Likewise, a sterile 5.0 mm cuffed tube was placed in the right MSB. Now bilateral ventilation was instituted through endobronchial tubes connected to Y-connector attached to anesthesia workstation [Figure 3]. The ETT's inserted in this manner provided adequate ventilation while preventing the spillage of blood and debris into the distal airways at the same time. Meanwhile, the orotracheal MLS tube was withdrawn proximal to the tumor and a 4 cm length of the trachea inclusive of the tumor was excised with primary anastomosis of the trachea. On closure of the trachea, endobronchial tubes were removed one by one and ventilation resumed through the oral MLS tube. The entire perioperative period was uneventful and trachea extubated at the completion of surgery with the resumption of spontaneous respiration. Neck flexion was maintained at an angle of 15° to minimize the tension on the tracheal anastomosis.
Figure 3: Bilateral endobronchial tubes in situ

Click here to view


The patient was transferred to intensive care unit (ICU) and was kept on noninvasive ventilation (iPAP 8 mmHg and ePAP 5 mmHg) for 48 h to prevent postoperative atelectasis and later on oxygen through venturi face mask (FiO 2 0.5). The patient was subsequently discharged from the ICU on 6 th postoperative day. Histopathology of the tumor revealed an adenoid cystic carcinoma. Postoperative bronchoscopy revealed healed operative site.


  Discussion Top


Primary tumors of trachea are relatively uncommon, presenting as a therapeutic challenge to the clinician. Most of the primary tracheal tumors are malignant, generally squamous cell or adenoid cystic carcinomas and comprise 75% of all the tumors of trachea. [4],[5]

Tracheal resection and reconstruction with primary anastomosis is the definitive treatment for managing tumors of trachea. [6],[7] Anesthetic management for tracheal resection is unique because of narrowed airway diameter and the challenge of maintaining ventilation during the perioperative period. [7] Therapeutic bronchoscopy, laser (Nd:YAG or CO 2 ), photodynamic therapy, cryotherapy, endobronchial brachytherapy or stenting are used to palliate unresectable tumors. [3],[4],[8],[9]

In the present case, preoperative laser resection of the tumors was not considered because it would have required multiple sessions. Preoperative chemotherapy has variable results in adenoid cystic carcinoma of head and neck, hence was not administered. [10]

Anesthesiologist involved in the perioperative care of patients with central airway obstruction must be aware of the techniques that allow maximal surgical access to the airway with minimal interference by the ETT while ensuring adequate ventilation and oxygenation at the same time. [11] Various techniques have been described to achieve the same in patients with lower tracheal mass. The conventional method is by passing the ETT beyond the growth or placing the tip of the ETT above the growth while maintaining spontaneous ventilation. [12],[13] Other techniques include high frequency jet ventilation, [14] rigid bronchoscopy and removal of the tumor, [8] combined use of Fogarty catheter, FOB and ETT, [15] laryngeal mask airway [16] and cardiopulmonary bypass. [17],[18],[19] However cardio pulmonary bypass (CPB) for tracheal resection may produce CPB-related complications and may be reserved for some special cases such as for patients with acute respiratory distress.

In the present case, since a 6.0 mm bronchoscope could be negotiated beyond the growth from the posterolateral side, therefore the internal diameter of the ETT required to bypass the growth ought to be less than outer diameter of bronchoscope to minimize the mechanical deformation of the tumor. Further the growth was situated at a distance of 9 cm from the vocal cords; therefore, an ETT with sufficient length to bypass the same was necessary. Therefore, primarily MLS tube was chosen for initial intubation distal to tumor because of its extra length (32 cm) as compared to PVC tube. Since it is comparatively soft it is less likely to be traumatic to the growth. It has a larger cuff which provides better contact and seal and less movement with positive pressure ventilation. Search of the literature did not reveal the use of MLS tube for securing the definitive airway for low tracheal tumor. Intubation of both MSB was done to achieve bilateral ventilation through Y-connector attached to anesthesia machine. Bilateral MSB intubation was done as the patient did not tolerate one-lung ventilation by endobronchial placement of MLS tube at the time of positioning of the patient. In a similar report, Theman et al. have described the use of bilateral endobronchial intubation in two cases using two anesthesia machines in a carinal tumor. [20] There has been a previous report of use of bilateral endobronchial microlaryngeal tubes for maintenance of ventilation in large trachea- esophageal fistula at the level of carina. [21]

Early extubation is desirable in these cases to avoid tension on the suture line by the ETT cuff and adverse effects of mechanical ventilation. Since the patient fulfilled the extubation criteria, same was done in the present case. [3]


  Conclusion Top


We recommend the use of extralong, soft, small sized MLS tube in tumors proximal to carina, for securing the airway before the transection of trachea and bilateral endobronchial intubation with small sized cuffed ETTs for maintenance of ventilation after the transection of trachea in patients with mass in the lower trachea. Good communication, coordination and cooperation between the surgeon and the anesthesiologist are mandatory throughout the perioperative period for a successful outcome. However, the anesthesiologist should have knowledge of other airway management techniques and be ready with an alternative plan in case of failure.

 
  References Top

1.
Mathisen DJ. Tracheal tumors. Chest Surg Clin N Am 1996;6:875-98.  Back to cited text no. 1
    
2.
Compeau CG, Keshavjee S. Management of Tracheal Neoplasms. Oncologist 1996;1:347-53.  Back to cited text no. 2
    
3.
Pinsonneault C, Fortier J, Donati F. Tracheal resection and reconstruction. Can J Anaesth 1999;46:439-55.  Back to cited text no. 3
    
4.
Grillo HC, Mathisen DJ. Primary tracheal tumors: Treatment and results. Ann Thorac Surg 1990;49:69-77.  Back to cited text no. 4
    
5.
Macchiarini P. Primary tracheal tumours. Lancet Oncol 2006;7:83-91.  Back to cited text no. 5
    
6.
Grillo HC, Donahue DM. Postintubation tracheal stenosis. Chest Surg Clin N Am 1996;6:725-31.  Back to cited text no. 6
    
7.
Perelman MI, Koroleva N, Birjukov J, Goudovsky L. Primary tracheal tumors. Semin Thorac Cardiovasc Surg 1996;8:400-2.  Back to cited text no. 7
    
8.
Wood DE. Management of malignant tracheobronchial obstruction. Surg Clin North Am 2002;82:621-42.  Back to cited text no. 8
    
9.
Cummings CW, Flint PW, Harker LA Haughey BH, Richardson MA, Robbins KT, et al. Cummings Otolaryngology-Head & Neck Surgery. Philadelphia, PA: Mosby Inc.; 2005.  Back to cited text no. 9
    
10.
Tsukuda M, Kokatsu T, Ito K, Mochimatsu I, Kubota A, Sawaki S. Chemotherapy for recurrent adeno-and adenoidcystic carcinomas in the head and neck. J Cancer Res Clin Oncol 1993;119:756-8.  Back to cited text no. 10
    
11.
Baraka A, Mansour R, Abou Jaoude C, Muallem M, Hatem J, Jaraki K. Entrainment of oxygen and halothane during jet ventilation in patients undergoing excision of tracheal and bronchial tumors. Anesth Analg 1986;65:191-4.  Back to cited text no. 11
[PUBMED]    
12.
Zhu B, Ma LL, Ye TH, Huang YG. Anesthesia management of tracheal resection. Chin Med J (Engl) 2010;123:3725-7.  Back to cited text no. 12
    
13.
Joynt GM, Chui PT, Mainland P, Abdullah V. Total intravenous anesthesia and endotracheal oxygen insufflation for repair of tracheoesophageal fistula in an adult. Anesth Analg 1996;82:661-3.  Back to cited text no. 13
    
14.
Satoh M, Hirabayashi Y, Seo N. Spontaneous breathing combined with high frequency ventilation during bronchoscopic resection of a large tracheal tumour. Br J Anaesth 2002;89:641-3.  Back to cited text no. 14
    
15.
Mentzelopoulos SD, Romana CN, Hatzimichalis AG, Tzoufi MJ, Karamichali EA. Anesthesia for tracheal resection: A new technique of airway management in a patient with severe stenosis of the midtrachea. Anesth Analg 1999; 89:1156-60.  Back to cited text no. 15
    
16.
Bouaggad A, Bennani F, Al Harrar R, Bouderka MA, Harti A. Anesthesia for a patient with tracheal tumor using laryngeal mask airway. Anesth Analg 2006;103:258-9.  Back to cited text no. 16
    
17.
Chiang YY, Ke CC, Wu RS, Chen KB, Shen ML, Poon KS. Endoscopic resection of tracheal tumor in an elderly woman under extracorporeal membrane oxygenation. Int J Gerontol 2011;5:56-8.  Back to cited text no. 17
    
18.
Chiu CL, Teh BT, Wang CY. Temporary cardiopulmonary bypass and isolated lung ventilation for tracheal stenosis and reconstruction. Br J Anaesth 2003;91:742-4.  Back to cited text no. 18
    
19.
DeWitt RC, Hallman CH. Use of cardiopulmonary bypass for tracheal resection: A case report. Tex Heart Inst J 2004;31:188-90.  Back to cited text no. 19
    
20.
Theman TE, Kerr JH, Nelems JM, Pearson FG. Carinal resection. A report of two cases and a description of the anesthetic technique. J Thorac Cardiovasc Surg 1976; 71:314-20.  Back to cited text no. 20
[PUBMED]    
21.
Au LC, White AS, Grant RP. A novel intubation technique for trachea esophageal fistula in adults. Can J Anesth 1999; 46:688-90.  Back to cited text no. 21
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]


This article has been cited by
1 Anesthesia airway management in a patient with upper tracheal tumor
Chen Wendi,Jiang Zongming,Chen Zhonghua
Journal of Clinical Anesthesia. 2016; 32: 134
[Pubmed] | [DOI]



 

Top
 
Previous article    Next article
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  IN THIS Article
   Abstract
  Introduction
  Case Report
  Discussion
  Conclusion
   References
   Article Figures

 Article Access Statistics
    Viewed2215    
    Printed22    
    Emailed0    
    PDF Downloaded129    
    Comments [Add]    
    Cited by others 1    

Recommend this journal