Previous article Table of Contents  Next article

ORIGINAL ARTICLE
Year : 2015  |  Volume : 9  |  Issue : 2  |  Page : 195-198

Influence of GlideScope assisted endotracheal intubation on intraocular pressure in ophthalmic patients


1 Department of Anesthesia, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
2 Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
3 Department of Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia

Correspondence Address:
Dr. Waleed Riad
Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1658-354X.152885

Clinical trial registration NCT01271621

Rights and Permissions
Date of Web Publication10-Mar-2015
 

  Abstract 

Background: Traditional Macintoch laryngoscopy is known to cause a rise in intraocular pressure (IOP), tachycardia and hypertension. These changes are not desirable in patients with glaucoma and open globe injury. GlideScope is a video laryngoscope that functions independent of the line of sight, reduces upward lifting forces for glottic exposure and requires less cervical neck movement for intubation, making it less stimulating than Macintosh laryngoscopy. Aim: The aim was to assess the variations in IOP and hemodynamic changes after GlideScope assisted intubation. Materials and Methods: After approval of the local Institutional Research and Ethical Board and informed patient consent, 50 adult American Society of Anesthesiologist I and II patients with normal IOP were enrolled in a prospective, randomized study for ophthalmic surgery requiring tracheal intubation. In all patients, trachea was intubated using either GlideScope or Macintoch laryngoscope. IOP of nonoperated eye, heart rate and blood pressure were measured as baseline, 1 min after induction, 1 min and 5 min after tracheal intubation. Results: IOP was not significantly different between groups before and after anesthetic induction and 5 min after tracheal intubation (P = 0.217, 0.726, and 0.110 respectively). The only significant difference in IOP was at 1 min after intubation (P = 0.041). No significant difference noted between groups in mean arterial pressure (P = 0.899, 0.62, 0.47, 0.82 respectively) and heart rate (P = 0.21, 0.72, 0.07, 0.29, respectively) at all measurements. Conclusion: GlideScope assisted tracheal intubation shown lesser rise in IOP at 1 min after intubation in comparison to Macintoch laryngoscope, suggesting that GlideScope may be preferable to Macintosh laryngoscope.

Keywords: GlideScope, hemodynamic response, intraocular pressure, intubation


How to cite this article:
Ahmad N, Zahoor A, Riad W, Al Motowa S. Influence of GlideScope assisted endotracheal intubation on intraocular pressure in ophthalmic patients. Saudi J Anaesth 2015;9:195-8

How to cite this URL:
Ahmad N, Zahoor A, Riad W, Al Motowa S. Influence of GlideScope assisted endotracheal intubation on intraocular pressure in ophthalmic patients. Saudi J Anaesth [serial online] 2015 [cited 2019 Nov 15];9:195-8. Available from: http://www.saudija.org/text.asp?2015/9/2/195/152885


  Introduction Top


Macintosh laryngoscopy has been traditionally used to facilitate tracheal intubation. This maneuver is associated with increased intraocular pressure (IOP), tachycardia and hypertension. [1]

These changes are not suitable for patients with glaucoma and open globe injury. Conventional intubation by Macintosh laryngoscope need to bring Oropharyngeal and laryngeal axis into line of sight that can develop stress response in patients. GlideScope video laryngoscope functions independently of the line of sight, reduces upward lifting forces to expose the glottis and requires less cervical neck movement for intubation, making it potentially less stimulating than Macintosh laryngoscope. [2] There is also a significant increase in the percentage of glottic opening visibility when using the GlideScope with cervical spine immobilization. [3]

To the best of our knowledge changes in IOP in ophthalmic patients while preforming endotracheal intubation using Glidoscope have not been studied. The aim of this study was to compare the variations in IOP and hemodynamics, associated with GlideScope versus conventional Macintosh laryngoscope assisted intubation.


  Materials and Methods Top


We obtained approval of Institutional Research and Ethical Board and informed written patient consent. This was a prospective, randomized study for ophthalmic surgery requiring tracheal intubation. Power analysis indicated that 25 patients were required in each arm to detect a difference of 30% in the IOP with 80% power and alpha error was set to 0.050 two-sided. Fifty adults patients with normal IOP and having American Society of Anesthesiologist (ASA) I and II were enrolled. Any patients with the previous history of raised IOP, cardiovascular hypertensive disease or renal, respiratory and neurological involvement were excluded from the study.

During preoperative visits all patients were assessed by a co-investigator for difficulty in laryngoscopy or visualization of the glottis by Mallampati grading, measuring thyromental distance and extension at the atlanto-occipital joint. Patients with predicted difficult intubation were excluded from this study. All patients were premedicated with midazolam (0.1 mg/kg) 1 h before surgery. Usual monitoring was applied to all patients. General anesthesia was induced with propofol, followed by rocuronium in a standardized manner in all patients. Patients were randomly assigned to either GlideScope (group 1) or Macintosh laryngoscope (group 2) for intubation. All intubations were performed by a single anesthesiologist who was experienced in both techniques. Baseline IOP (nonoperated eye), heart rate, mean blood pressure and duration of intubation were measured 1 min after induction, followed by 1 and 5 min after tracheal intubation.

Data analysis was performed using Statistical Package for Social Studies (SPSS 19) (IBM, Boston, USA). Differences between the two groups with regard to intubation time, IOP, heart rate and mean arterial pressure (MAP) were tested by Mann-Whitney U-test. P < 0.05 were considered as statistically significant.


  Results Top


Demographic and clinical data were similar for age, sex, weight, height, Mallampati/ASA classifications and duration of surgery among both groups. All tracheal intubations were successful at first attempt. GlideScope, generally provided a laryngoscopic view equal or better than that of direct laryngoscopy. IOP was not significantly different between groups before and after induction and 5 min after tracheal intubation (P = 0.217, 0.726, 0.110 respectively). The only significant difference was lesser rise in IOP at 1 min after intubation (P = 0.041) in GlideScope group in comparison with Macintosh group. No significant difference was found between the groups in MAP (P = 0.899, 0.62, 0.47, 0.82 respectively) and in the heart rate (P = 0.21, 0.72, 0.07, 0.29 respectively) at all measurements. Duration of intubation was slightly longer in group 1 in comparison to group 2 (20.12 ± 8.05 and 16.12 ± 5.67 s respectively), but was not significant statistically (P = 0.079) [Table 1] and [Figure 1], [Figure 2] and [Figure 3].
Figure 1: Intraocular pressure in nonoperated eye after GlideScope assisted endotracheal intubation versus conventional method

Click here to view
Figure 2: Mean arterial blood pressure after GlideScope assisted endotracheal intubation versus conventional method

Click here to view
Figure 3: Heart rate in after GlideScope assisted endotracheal intubation versus conventional method

Click here to view
Table 1: Comparison of participant's characteristics

Click here to view



  Discussion Top


Laryngoscopy and endotracheal intubation is likely to produce tachycardia and hypertension and an increase in IOP. [4] IOP is elevated secondary to increased sympathetic activity that causes vasoconstriction leading to a rise in central venous pressure, which determines episcleral venous pressure. A raised episcleral venous pressure could lead to vitreous chamber venous engorgement and a reduction in aqueous humour drainage, both of which lead to a rise in IOP. Therefore, prevention from acute rise in IOP becomes important during laryngoscopy and endotracheal intubation in patients with acute glaucoma and open globe injuries. An acutely raised IOP may cause expulsion of the globe contents through a surgical wound or traumatic perforation, or may lead to retinal artery occlusion with change from critical disc perfusion into disc ischemia. [5]

Intubation with GlideScope provides a clear view of glottis without alignment of the oral, pharyngeal, and laryngeal axes and less manipulation of airway, which may cause less stimulation of the sympathetic system and resulting in less increase in the IOP and other hemodynamic parameters.

Different approaches have been used to limit the intubation responses and a rise in IOP associated with endotracheal intubation. Brain's laryngeal mask airway and intubating laryngeal mask airway have shown a clear advantage over direct laryngoscopy for tracheal intubation in minimizing increase in IOP with lesser sympathetic stimulation than endotracheal tube insertion. [1],[6] Takahashi et al. [7] compared conventional laryngoscope with Lightwand intubating device (Trachlight) for hemodynamic changes, but could not find any difference in response. On contrary, Kihara et al. [8] has shown that intubating laryngeal mask airway Fastrach and the Trachlight Lightwand attenuated the hemodynamic stress response to tracheal intubation in comparison with Macintosh laryngoscope in hypertensive patients. Suresh et al. [9] concluded that McCoy laryngoscope in comparison to Macintosh laryngoscope resulted in significantly less rise in IOP and clinically less marked increase in hemodynamic response to laryngoscopy and intubation. This is also similar to a reduction in hemodynamic responses to tracheal intubation by the Bonfils retromolar fiberscope. [10]

In another study by Turkstra C-spine motion was reduced 50% at the C2-5 segment using the GlideScope. [11] Li et al. [12] showed that the hemodynamic responses caused by nasotracheal intubation were more severe than Fiber optic bronchoscope, followed by Macintosh direct laryngoscope, and least to GlideScope video-laryngoscope. In a recent report Pournajafian et al. [13] noted no significant variations in hemodynamic values while comparing between the GlideScope video laryngoscope and Macintosh laryngoscope during orotracheal intubation.

Most of the above mentioned studies have measured the hemodynamic responses instead of IOP using different tools for intubation but our study is unique in a way that we measured the direct changes in IOP when comparing GlideScope with conventional Macintosh laryngoscope. The baseline IOP was similar in both groups in our study. IOP significantly decreased in both the groups following induction (preintubation), [Figure 1], which was more likely due to the effect of anesthetic agents [14] but 1 min after intubation, GlideScope assisted tracheal intubation caused less rise in the IOP in comparison to Macintoch laryngoscope. GlideScope videolaryngoscopy took slightly longer time to intubate the trachea compared with the Macintosh blade despite the improved glottic view. This finding is well reported in the literature. [13],[15] All tracheal intubations were successful on the first attempt. In most patients, the GlideScope provided a laryngoscopic view equal to or better than that of direct laryngoscopy. It has potential advantages over standard direct laryngoscopy for difficult intubations. [16]


  Conclusion Top


GlideScope may be preferable for use in ophthalmic patients in whom a rise in IOP is undesirable. However, further clinical trials are needed in patients with glaucoma to further evaluate the benefits of GlideScope.


  Acknowledgments Top


The authors acknowledge the efforts of Rajiv Khandekar, MD and Nasira Asghar, MS in assisting the statistical analysis.

 
  References Top

1.
Bukhari SA, Naqash I, Zargar J, Nengroo S, Mir AW. Pressor responses and intraocular pressure changes following insertion of laryngeal mask airway: Comparison with tracheal tube insertion. Indian J Anaesth 2003;47:473-5.  Back to cited text no. 1
  Medknow Journal  
2.
Tsai P, Chen B. Hemodynamic responses to endotracheal intubation comparing the airway scope ® , glidescope ® , and macintosh laryngoscopes. Internet J Anesthesiol 2009;24:2.  Back to cited text no. 2
    
3.
Kim HJ, Chung SP, Park IC, Cho J, Lee HS, Park YS. Comparison of the GlideScope video laryngoscope and Macintosh laryngoscope in simulated tracheal intubation scenarios. Emerg Med J 2008;25:279-82.  Back to cited text no. 3
    
4.
Watcha MF, White PF, Tychsen L, Stevens JL. Comparative effects of laryngeal mask airway and endotracheal tube insertion on intraocular pressure in children. Anesth Analg 1992;75:355-60.  Back to cited text no. 4
    
5.
Murgatroyd H, Bembridge J. Intraocular pressure. Contin Educ Anaesth Crit Care Pain 2008;8:100-3.  Back to cited text no. 5
    
6.
Bharti N, Mohanty B, Bithal PK, Dash M, Dash HH. Intra-ocular pressure changes associated with intubation with the intubating laryngeal mask airway compared with conventional laryngoscopy. Anaesth Intensive Care 2008;36:431-5.  Back to cited text no. 6
    
7.
Takahashi S, Mizutani T, Miyabe M, Toyooka H. Hemodynamic responses to tracheal intubation with laryngoscope versus lightwand intubating device (Trachlight) in adults with normal airway. Anesth Analg 2002;95:480-4.  Back to cited text no. 7
    
8.
Kihara S, Brimacombe J, Yaguchi Y, Watanabe S, Taguchi N, Komatsuzaki T. Hemodynamic responses among three tracheal intubation devices in normotensive and hypertensive patients. Anesth Analg 2003;96:890-5.  Back to cited text no. 8
    
9.
Suresh S, Karampal S, Naresh S, Punam R. Intraocular pressure changes following laryngoscopy and intubation: McCoy versus Macintosh laryngoscope. Sri Lankan J Anaesthesiol 2012;20:73-7.  Back to cited text no. 9
    
10.
Boker A, Almarakbi WA, Arab AA, Almazrooa AA. Reduced hemodynamic responses to tracheal intubation by the Bonfils retromolar fiberscope: A randomized controlled study. Middle East J Anaesthesiol 2011;21:385-90.  Back to cited text no. 10
    
11.
Turkstra TP, Craen RA, Pelz DM, Gelb AW. Cervical spine motion: A fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg 2005;101:910-5.  Back to cited text no. 11
    
12.
Li XY, Xue FS, Sun L, Xu YC, Liu Y, Zhang GH, et al. Comparison of hemodynamic responses to nasotracheal intubations with GlideScope video-laryngoscope, Macintosh direct laryngoscope, and fiberoptic bronchoscope. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2007;29:117-23.  Back to cited text no. 12
    
13.
Pournajafian AR, Ghodraty MR, Faiz SH, Rahimzadeh P, Goodarzynejad H, Dogmehchi E. Comparing glidescope video laryngoscope and macintosh laryngoscope regarding hemodynamic responses during orotracheal intubation: A randomized controlled trial. Iran Red Crescent Med J 2014;16:e12334.  Back to cited text no. 13
    
14.
Mirakhur RK, Shepherd WF, Elliott P. Intraocular pressure changes during rapid sequence induction of anesthesia: Comparison of propofol and thiopentone in combination with vecuronium. Br J Anaesth 1988;60:379-83.  Back to cited text no. 14
    
15.
Healy DW, Picton P, Morris M, Turner C. Comparison of the glidescope, CMAC, storz DCI with the Macintosh laryngoscope during simulated difficult laryngoscopy: A manikin study. BMC Anesthesiol 2012;12:11.  Back to cited text no. 15
    
16.
Sun DA, Warriner CB, Parsons DG, Klein R, Umedaly HS, Moult M. The glidescope video laryngoscope: Randomized clinical trial in 200 patients. Br J Anaesth 2005;94:381-4.  Back to cited text no. 16
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]



 

Top
 
Previous article    Next article
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  IN THIS Article
   Abstract
  Introduction
   Materials and Me...
  Results
  Discussion
  Conclusion
  Acknowledgments
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed1757    
    Printed19    
    Emailed0    
    PDF Downloaded121    
    Comments [Add]    

Recommend this journal